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Chapter 1

REPORT SUMMARY

1.1 Purpose of project

We are developing a system of rules and techniques for derivation of various classes of parallel
algorithms including:

1. Systolic algorithms for various fixed connection networks

2. Randomized parallel algorithms

3. Parallel algorithms for tree and graph problems, r

4. Parallel algorithms for algebraic problems,

We are emphasizing the developmentpf fundamental derivation techniques that can be uti-
lized in as wide a class of parallel algorithms as possible The specific algorithms to be derived

have themselves been carefully chosen to be as fundamental as possible. Algorithms and areas
currently under investigation include: parallel list ranking, parallel graph connectivity, auto-

matic parallel compilation from segmented straight-line programs, and derivation of pipelined
algorithms for small-diameter networks. A textbook, "Synthesis of Parallel Algorithms" (to be
edited by Reif) is under way. A list of talehted and well-known authors have agreed vist Duke in
the Fall of 1989, and many are collaborating with Reif on their chapters. This text should bring
together ideas from many sources on derivation of parallel algorithms. A new programming

language, intended to be used as a Common Prototyping Language is under development.
We intend that the derivation techniques developed in this project will be implemented

within the various other DARPA sponsored derivation systems.

1.2 Equipment Purchased

The following important items of equipment were purchased under this contract:
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DESCRIPTION OF PROGRESS

Investigations of several subproblems in the area of derivation of parrallel programs were
continued during the current quarter. These investigations include:

1. Derivation of various parallel algorithms, parallel graph connectivity and parallel list
ranking (with student, Doreen Yen); parallel list ranking is now complete, now working
on parallel graph connectivity;

2. Automatic Parallel compilation from segmented straight line programs (with student,
Lorrie Tomek),

3. Derivation of pipelined algorithms on small networks (with student, Steve Tate and
Prof. Robert Wagner),

4. Programming Language: Common Prototype Language (CPL), developed by student
Lars Nyland and Professors Jan Prins, Robert Wagner and John Reif. CPL uses UNITY
Primitives; now collaborating with Kestrel Institute with DARPA Proposal in CPL;

5. Duke algorithm Derivation Semninar: participants-Professors Robert Wagner, Donald
Loveland, Gopalan Nadathur and John Reif; four visiting quest speakers in attendance
were Professors Guy Blelloch, Gary Miller, Yijie Han and Victor Pan;

6. Proceeding on a textbook on "Synthesis of Parallel Algorithms" (to be edited by Reif)
participating authors are to visit Duke University in Fall 1989, many of whom are
collaborating with Reif on their chapters.
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July 24, 1989

LIST OF EQUIPMENT PURCHASED

5 EACH MACINTOSH COMPUTERS 18,258.87

5 EACH 80 MB INTERNAL MACUSE 4,547.00

4 EACH RADIUS 19" MONITORS 8,040.00

1 EACH 0030 RADIUS 19" MONITOR 3,020.00

1 EACH MATHEMATICA FOR MACKII 675.75

1 EACH APPLE LASERWRITER PRINTER 3,350.00

TOTAL EXPENSED TO DATE 37,891.62

TOTAL AWARDED EQUIPMENT (84,000.00)

BALANCE IN EQUIPMENT NOT SPENT (46,108.38)



1.3 Conclusions

Work is ongoing as described in the technical results section of this report.
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Chapter 2

Technical Results

2.1 Textbook: Synthesis of Parallel Algorithms

Reif has invited a large number of prestigious researchers in the field of Parallel Algorithms to
participate in writing a textbook on algorithms synthesis. The text is intended to review the
existing knowledge in this area, at the level of a Senior undergraduate or first year graduate
student. This text should draw together the many different principles which have been used to
develop the current large collection of parallel algorithms which are theoretically interesting.

At the present writing, some 31 researchers have agreed to submit chapters of this text, and
to referee 2 other chapters. Reif intends to collaborate with several of these researchers, and has
invited them to visit Duke, where they will be available for discussion with other members of
the Duke community, including the participants in the other projects funded by this contract.

This textbook promises to have significant impact on the development of parallel algorithms
in the future. It should also serve as a central source, from which the details of the derivation
process for some classes of algorithms can be extracted, and turned into a toolset useful for
developing future algorithms.

In inviting participation, Reif suggested that each chapter begin with a careful statement
of the fundamental problems, and the solution and analytic techniques to be used in their
solution. He suggested that these techniques be related, where possible, to known sequential
efficient algorithms. In later sections of the chapter, more sophisticated parallel algorithms are
to be synthesized from the simpler parallel algorithms and techniques discussed earlier. Thus, a
progression from simple to more complicated (and presumably more efficient) algortihms would
be created. This progression should reveal the kinds of transformations needed in synthesizing
this type of algorithm.

2.1.1 Participating Authors and Topics

1. RICHARD LADNER PARALLEL PREFIX
University of Washington COMPUTATION

2. GUY BLELLOCIt MULTIPREFIX COMPUTATIONS
Carnegie- Mellon University A ND A PPL1CATIONS
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3. GARY MILLER PARALLEL TREE CONTRACTION

Carnegie-Mellon University AND APPLICATION

4. PARALLEL CONNECTIVITY AND LIST RANKING

A. SARA BAASE INTRODUCTION TO PARALLEL
San Diego State University CONNECTIVITY, LIST RANKING

AND EULER TOUR TECHNIQUE

B. UZI VISJIKIN ADVANCED PARALLEL
UMIACS CONNECTIVITY AND LIST
University of Maryland RANKING

5. HILLEL GAZIT RANDOMIZED PARALLEL
Duke University CONNECTIVITY

6. VIJAYA RAMACHANDRAN PARALLEL EAR DECOMPOSITION
University of Texas at Austin VITH APPLICATIONS TO

PARALLEL BICONNECTIVITY AND
TRICONNECTIVITY

7. VIJAY VAZIRANI PARALLEL GRAPH MATCHING
Cornell University

8. ERICH KALTOFEN DYNAMIC PARALLEL
RPI EVALUATION OF DAGs

9. JEFFREY ULLMAN PARALLEL EVALUATION
Stanford University OF LOGIC QUERIES

10. RAO KOSARAJU TOPIC: TOIBE ASSIGNED
The Johns Hopkins University

11. LARRY RUZZO PARALLEL CFL AND DCFL
University of Washington RECOGNITION

12. PILIP KLEIN PARALLEL PQ TREE
Harvard University OPERATIONS AND

APPLICATIONS

13. MICHAEL LUBY PARALLEL COMPUTATION OF
International Computer MAXIMAL INDEPENDENT SET
Science Institute
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14. VICTOR PAN PARALLEL SOLUTION OF
CUNY SPARSE LINEAR AND

PATH SYSTEMS

15. ANDREW GOLDBERG PARALLEL NETWORK FLOW
Stanford University

16. PAUL BEAME PARALLEL CHINESE
University of Washington REMAINDERING AND INTEGER

DIVISION

17. STEPHEN TATE NEWTON ITERATION AND
Duke University INTEGER DIVISION

18. MICHAEL BEN-OR PARALLEL ROOT FINDING

Hebrew University

19. JOACHIM von zur GATHEN PARALLEL MATRIX
University of Toronto COMPUTATIONS AND SOLUTION

OF ALGEBRAIC PROBLEMS

20. NIMROD MEGIDDO PARALLEL LINEAR
IBM Almaden Res. Ctr. PROGRAMMING

21. RICHARD COLE PARALLEL MERGE SORT
Courant Institute

22. MIKHAIL ATALLAII DETERMINISTIC PARALLEL
Purdue University COMPUTATIONAL GEOMETRY

23. SANGUTItEVAR RAJASEKARAN RANDOMIZED PARALLEL
University of Pennsylvania SELECTION AND SORTING

24. SANDEEP SEN RANDOMIZED PARALLEL

Duke University COMPUTATIONAL GEOMETRY

25. RICHARD ANDERSON PARALLEL DEPTH FIRST

University of Washington SEARCII

26. ZVI GALIL PARALLEL STRING MATCHING

Columbia University
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27. RICHARD KARP PARALLEL TREE SEARCH
University of California

28. ALOK AGGARWAL and PARALLEL DYNAMIC
JAMES PARK PROGRAMMING
IBM Watson Res. Ctr.

29. PHIL GIBBONS ASYNC]HRONOUS PRAM
University of California ALGORITIIMS

30. RAYMOND GREENLAW POLYNOMIAL COMPLETENESS
University of Washington AND PARALLEL COMPUTATION

31. BARUCH SCIIIEBER PARALLEL LOWEST COMMON
IBM Watson Res. Ctr. ANCESTOR COMPUTATIONS

2.2 CPL: A High-level Prototyping Language

We are developing a language to be used for prototyping. The goal is to facilitate the initial
prototyping of algorithms as executable programs. The Common Prototype Language (CPL)
is our proposed answer to this goal. Our view of prototyping is the ability to write programs
primarily for the purpose of experimentation and validation of ideas in a quick and easy fashion.
Prototype programs do not necessarily have complete specifications.

2.2.1 The Essence of CPL

DARPA/ISTO has challenged the community to design a prototyping language with ambitious
capabilities. We propose a Common Prototyping Language (CPL) that meets this challenge.
The essence of our proposal is to:

" Adopt UNITY[I], a programming paradigm for developing algorithms on parallel and
distributed computers as the fundamental model of control in CPL. UNITY is supported
by a programming logic, which allows formal reasoning about the correctness, safety and
progress of computations. The UNiTY style supports formal program development from
abstract specifications to concrete implementations.

* Provide CPL with a rich data model incorporating set-theoretic type constructors such
as sets and relations, objects, user-defined data abstractions, and a rich, flexible notion
of type.

" Augment the control structures of UNITY to support block structure, subroutines, se-
quencing, iteration, AI programming methods, and modules. These extensions will be
consistent with the underlying semantics and will provide a siirface syntax similar to
conventional languages.
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@ Adopt REFINE's [2] language extension capabilities, which supports the definition of
grammars, parsing and printing, a standard representation of abstract syntax within the
data model, and a powerful pattern and transformation capability.

CPL is derived from UNITY[1], a programming paradigm for developing algorithms on par-
allel computers. Although the CPL has only a small number of control primitives, they have
the expressive power to describe sequencing, concurrency, parallel computation, and nonde-
terministic search by forward and backward chaining. CPL will support a small number of
built in fundamental classes such as sets, arrays, and relations, with correspondingly rich set
of standard mathematical operators and syntax. CPL allows various levels of specification,
from very high level to much lower level, with environment support for derivation of programs
at various levels of specification. For example, we propose a flexible type system with type
inference that allows transition from typeless declarations to fully typed programs.

CPL demands high-level primitives over complex data types to support the mathematical
notions of execution, and descent to low-level primitives such as variables, assignments and
machine-oriented data types (integers vs. reals) to model the more concrete aspects. We
believe that the best way to proceed with CPL is to incorporate as much of REFINE[2], a
high-level program development model based on program transformation, as is consistent with
the requirements for a prototype language, and to rely on it to provide a wide-spectrum of
constructs to control execution and state.

2.2.2 Our Team

Our team has broad experience within the fields of languages, systems, distributed and parallel
computation, compilers and derivational computing. Experience with REFINE, a system which
approaches many of the design goals of CPL, will prove invaluable.

The group of people involved with this project come from three institutions: Duke Uni-
versity, The University of North Carolina, and Kestrel Institute. Professors John Reif (Ph.D.
from Harvard on Symbolic Program Execution and an expert in parallel computation and al-
gorithm derivation) and Robert Wagner (Ph.D. from Carnegie-Mellon University on Compiler
Optimization and an expert on parallel computation and compilers) are defining the project
with help from graduate student Lars Nyland. They are working in cooperation with UNC
professor Jan Prins (Ph.D. froii. Cornell University on Programming Languages and an expert
in derivational computing). From Kestrel, Allen Goldberg (Ph.D. from Courant Institute, and
an expert on program derivation and optimization), Richard Jillig (Ph.D. from University of
California, Santa Cruz, an expert on compilers and meta-compilers), and Doug Smith (Ph.D.
from Duke, an expert on algorithm design and program transformation) will be working on the
project.

Bibliography

[1] K. Mani Chandy and Jayadev Misra. Parallel Program Design, .4 Foundation. Addison-
Wesley Publishing Company, 1988.
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[2] Reasoning Systems, Inc., 1801 Page Mill Rd., Palo Alto, CA 94304, (415) 494-6201. Refine

User's Guide, August 1988. For Refine version 2.0 with updates for version 2.1 on Sun-3

series computer.

2.3 Duke Algorithm Derivation Seminar

During Fall, 1988, a seminar on algorithm derivation was held at Duke. Participants included
Don Loveland, ltillel Gazit, Gopalan Nadathur, Robert Wagner, and John Reif, all professors
at Duke; Four visiting guest speakers were Professors Guy Blelloch, Gary Miller, Yijie Ilan,
and Victor Pan. Topics covered included papers by Marina Chen and D. Mloldovan concerning

derivation of Systolic Arrays from recurrence equations, papers by Chen on the CRYSTAL lan-
guage for expressing algorithms as recurrence equations, papers by Reif on deriving randomized
algorithms, papers by Scherlis, Burstall and Darlington, and Paige on derivation of algorithms

by program transformations. The Duke participants prepared lectures on these topics, which
were presented in one or two meetings each, in a setting which allowed for considerable discus-

sion.
Paige's work on derivation of algorithms by algorithm finite differencing was presented by

his student, Jiazhen Cal. Each of the other visitors presented a formal lecture, whose titles are
given in the subsection which follows. In addition, some of the visitors discussed some of their

earlier work with the Duke participants. Blelloch talked on the use of Parallel Prefix (Scan)
operations in parallel algorithms, Miller discussed his work on efficient parallel evaluation for

DAGs.
Yijie Han presented a lecture on deriving an efficient algorithm for the linked-list parallel

prefix problem on a network of processors with restricted communication access, and Victor
Pan presented some work on Computing polynomial zeros and its impact on matrix eigenvalue
computation. . This seminar served to introduce the Duke participants to the areas with
which they were unfamiliar, and served to suggest directions for further work for the group.
A principal outcome of the seminar was a realization that progress in aigorithm derivation
depends strongly on the language in which algorithms expressed initially, and lead to some
discussions of a possible universal language for expressing parallel algorithms in a succinct,
understandable form, independent of any particular parallel architecture. Discussions on this
topic were joined by Professor Jan Prins, of UNC, and have resulted in considerable work in

defining such a language, which we deem usable as a "Common Prototyping Language".
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2.3.1 Lectures by Visitors

February 14, 1989 Guy E. Blelloch, Carnegie Mellon University
Compiling Collection-Oriented Languages Onto
Massively Parallel Computers

March 22, 1989 Victor Pan, SUNY, Albany
New Progress in Computing Polynomial Zeros
And Its Impact on Matrix Eigenvalue Computation

March 23, 1989 Victor Pan, SUNY, Albany
Parallel Inversion and Factorization of
Toeplitz and Toeplitz-Like Matrices

March 31, 1989 Gary Miller, Carnegie Mellon University

Optical Communication For Pointer Based Algorithms

May 5, 1989 Yijie Han, University of Kentucky
An Optimal Linked List Prefix Algorithm
On A Local Memory Computer

2.4 Synthesizing Algorithms for Small Diameter Networks

Small liameter :, tworks (such as the hypercube and the butterfly) are becoming increasingly
popular as an interconnection network for large multiprocessors. While much work has been

done developing parallel algorithms that run on such networks, the vast majority of work
has focused on particular algorithms. For simpler networks (such as square and hexagonal
grids), there are many papers on general derivation techniques. We propose similar derivation
results for the small diameter networks; the methods seem to be efficient enough for effective
implementation.

2.4.1 Small Diameter Networks

A network is simply an interconnection of processing units. One of the most important measures
of a network is its diameter; the diameter is simply the longest distance between two processors
in the network (measured as the number of intermediate processors that the path must go
through). Obviously, the most efficient network is one in which every processor is directly
connected to ever other processor (for a diameter of 1); unfortunately, this connection strategy
becomes too complex to be feasible for even moderately large multiprocessors.

On the other hand, the most easily visualized (and implemented) network is a square grid
(every processor has exactly 4 neighbors, regardless of the total number of processors). As can
be easily seen, for a netuok of n processors, the diameter is V/51.
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Other types of networks have been proposed that have diameter O(logn) for n processor

networks, this diameter being between the unrealistic full connection network and the ineffi-
cient grid. Furthermore, the feasibility of these networks is shown by a number of hardware
implementations (the BBN Butterfly and the Connection Machine are two examples). As an
example of the improvement in diameter, a network with 64k (approximately 64,000) processors
connected by a square grid has diameter 256 while the same number of processors connected
by a hypercube has a diameter of only 16. This means that certain algorithms on a hypercube
of 64k processors will run 16 times faster than the algorithm would run on a grid with the
same number of processors. The difference becomes even more extreme as larger networks are
considered (with approximately a million processors, the grid diameter is 50 times greater than
the diameter of the hypercube).

2.4.2 Derivation of Algorithms

There have been many papers on mapping algorithms to the simple architectures of planar
grids (square or hexagonal); see, for example, [2], [3], [7], and [8]. Unfortunately, small diameter
networks are more difficult to describe in uniform mathematical terms using previous methods;
one attempt to find a unifying framework for small diameter networks can be found in [1].

We note that most (in fact, all that we know of) small diameter networks have a natural

representation using the abstract algebra concept of a ring of polynomials over a field (most
common networks are described using Z2[X]/(X losn + 1)). From abstract algebra, we also

know that many of the operations used in the previous algorithms for mapping to grids can

now be used in our new domain, giving us a way of mapping algorithms to small diameter
networks.

We do not claim to map all algorithms to small diameter networks; however, what we

do claim is that we have the first automatic method of mapping algorithms to small diameter
networks. It is our hope that this will give rise to additional research that broadens its usefulness
(as was the case with research on mapping algorithms to grid networks).

2.4.3 Implementation

Our mapping methods should be practical enough to be implemented - we plan on imple-
menting our results in some portable programming langaage, and then testing how practical
these methods actually are. The implementation will be similar to existing software that maps

algorithms to grids (e.g., ADVIS [4]), but doing calculations over our new algebraic domain.

2.4.4 Researchers

This project is being run by John Reif, Ph.D., at Duke University. Also involved in the entire

project is Robert Wagner, Ph.D., who is also at Duke. The theoretical background is being

worked on by graduate student Stephen Tate (Duke University), and implementation will be

done by Akitoshi Yoshida, also a graduate student at Duke University.
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2.5 Derivation of parallel algorithms

There are a sufficient number of parallel random-access machine (PRAM) algorithms to consider
parallel algorithm program derivation. A primary reference for these algorithms is the survey

by Karp. [3] Several problems such as list ranking have spawned a series of increasingly efficient
algorithms, both randomized [6] and deterministic [1] which provide examples for an application
of the evolutionary approach to program transformations advocated by Reif and Scherlis. [7]
Some PRAM algorithms are closely related. Expression evaluation on trees is reducible to list

ranking. (2] The problem of computing the connected c6mponents of a graph has a similar
history. As in the sequential graph algorithm derivations by Reif and Scherlis, the PRAM

algorithm domain offers the opportunity for reasoning by analogy to derive a family of related
algorithms.

UNITY [5] will be considered as a programming language for PRAM algorithm derivation.

Experiments on PRAM algorithms with program transformation steps used in the ERGO
project: [4] reduction, expansion, choice-function introduction, and choice-function elimination
will be conducted but other transformation steps peculiar to PRAM algorithms will be needed.

For example, a common technique in the evolution to an optimal PRAM algorithm requires

finding a way to divide the input into size log n chunks.
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2.6 Randomized Algorithms

Reif and his student, Sandeep Sen, have developed several randomized algorithms, and have
studied the process by which such algorithms are developed. Several papers [1, 2, 3, 4] have
been produced. There are clearly some general principles underlying the derivation of such
algorithms, and these issues will be explored in followup work.
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